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Abstract—The main contribution of this paper is the develop-
ment of a novel approach, based on the theory of Reproducing
Kernel Hilbert Spaces (RKHS), for the problem of Noise Removal
in the spatial domain. The proposed methodology has the
advantage that it is able to remove any kind of additive noise
(impulse, gaussian, uniform, e.t.c.) from any digital image, in
contrast to the most commonly used denoising techniques, which
are noise-dependent. The problem is cast as an optimization
task in a RKHS, by taking advantage of the celebrated Rep-
resenter Theorem in its semi-parametric formulation. The semi-
parametric formulation, although known in theory, has so far
found limited, to our knowledge, application. However, in the
image denoising problem its use is dictated by the nature of the
problem itself. The need for edge preservation naturally leads to
such a modeling. Examples verify that in the presence of gaussian
noise the proposed methodology performs well compared to
wavelet based technics and outperforms them significantly in the
presence of impulse or mixed noise.

Index Terms—Kernel, Denoising, Reproducing Kernel Hilbert
Spaces, semi-parametric representer theorem

I. INTRODUCTION

THE problem of noise removal from a digitized image
is one of the most important ones in digital image

processing. So far, various techniques have been proposed to
deal with it. Among the most popular methodologies are, for
example, the wavelet-based image denoising methods (which
dominate the research in recent years, see for example [1],
[2], [3], [4], [5]), the image denoising methods based on
Partial Differential Equations ([6]), neighborhood filters ([7],
[8]), some methods for impulse detection (see [9], [10], [11],
[12]), methods based on fractal theory [13] and, more recently,
methods of non linear modeling using kernel regression and/or
local expansion approximation techniques ([14]). In many
cases, the denoising techniques are focused on a particular
noise model (gaussian, impulse, e.t.c.) [15], [2], [3], [5],
[11], [10]. Thus, they cannot treat effectively more complex
models, which are often met in practical applications. In this
paper, we propose a different approach. We treat noise in a
unified framework. Our only assumption is that the image is
corrupted by zero mean additive noise, without any additional
information with respect to the noise pdf. To remove the noise,
we employ the well known (especially in pattern analysis)
theory of kernels.
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In kernel methodology, the notion of the Reproducing
Kernel Hilbert Space (RKHS) plays a crucial role. A RKHS,
introduced in [16], [17], [18], is a rich construct (roughly, a
smooth space with an inner product), which has been proven
to be a very powerful tool. Kernel based methods are utilized
in an increasingly large number of scientific areas, especially
where non-linear models are required. For example, in pattern
analysis, a classification task of a set X ⊂ Rm is usually
reformed by mapping the data into a higher dimensional space
(possibly of infinite dimension) H, which is a Reproducing
Kernel Hilbert Space (RKHS). The advantage of such a map-
ping is to make the task more tractable, by employing a linear
classifier in the feature space H, exploiting Cover’s theorem
(see [19], [20], [21], [22]). This is equivalent with solving a
non-linear problem in the original space. Similar approaches
have been used in principal components analysis, in Fisher’s
linear discriminant analysis, in clustering, regression and in
many other subdisciplines (see [19], [20] for more). Recently,
processing in RKHS is gaining in popularity within the Signal
Processing community in the context of adaptive filtering and
beam forming [23], [24], [25], [26].

Though there has been some work exploring the use of
kernels in the denoising problem, the methodology presented
here is fundamentally different. In [14], the notion of kernel
regression has been adopted. The original image is formulated
as a local (e.g. Taylor) approximation series around a center
xi and data adaptive kernels are used, as weighted factors,
to penalize distances away from xi. In a relatively similar
context, kernels have been employed by other well known
denoising methods (such as [7]). In [27] and [28] a support
vector regression approach is considered for the gaussian noise
case and in [29] the kernel principal components of an image
are extracted and this expansion is truncated to produce the
denoising effect. However, in the latter approaches the reported
results are rather poor.

In our case, the main idea is to assume that the original
(noise-free) image lies in a RKHS and thus it can be formu-
lated as a linear combination of specific kernel functions that
justify the existence of a Reproducing Kernel Hilbert Space.
Therefore, in our methods, the kernels are used in order to
explicitly model the denoised image, in contrast to the SKR
method of [14], where kernels are used as weighted factors to
a Taylor approximation. In contrast, as already been stated,
in our case, kernels can only be reproducing kernels (i.e.,
a kernel that generates a RKHS, not any kernel function).
The methodology presented in this paper is derived from the
discipline of machine learning (learning with kernels), rather
than that of the non parametrical statistical estimation, where
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kernel regression has its roots. The approach we have used,
gives us the power to model and work in infinite dimensional
Hilbert spaces, instead of a simple family of kernels. Hence,
our approach lies closer to the support vector regression and
kernel principal component analysis methods derived in [27],
[30], than to the kernel regression employed in [14] and
elsewhere. We exploit a useful property of RKHS, the so
called representer theorem. It states that the minimizer of any
optimization task in the Hilbert space H, with a cost function
of a certain type, has finite representation in H. We recast the
image denoising problem as an optimization task of this type
and use a semi-parametric variant of the representer theorem to
obtain its solution algorithmically. The semi-parametric part of
the methodology is used to explicitly model, and thus preserve,
the sharp edges of the image, which are not respected if only
the kernel expansion is considered. This is done by learning
edge models using a rich set of basis functions, similarly
to the modeling approach taken by the K-SVD algorithm
[31]. The denoising procedure is performed inside a pixel-
centered region that moves from one pixel to the next and
the parameters of the model are controlled adaptively at each
region to preserve the fine details and local characteristics of
the image. Note that at the optimization step the L1 norm is
employed as the cost function. This implies that the proposed
method will give enhanced results when impulse or Laplace -
distributed noises (with potentially spatially varying statistics)
are considered. This is verified by the tests’ results.

The paper is structured as follows. In Section II, we briefly
describe the key mathematical preliminaries behind the notion
of RKHS and state the representer theorem. In Section III, we
present the kernelized approach to the image denoising prob-
lem. The framework, the details of the implementation as well
as the algorithmic scheme can be found there. Experiments on
images corrupted by various types of synthetic noise models
(impulse, gaussian, uniform, mixed) are detailed in Section IV
and Section V concludes the paper.

II. MATHEMATICAL PRELIMINARIES

A. Reproducing Kernel Hilbert Spaces
We start with some basic definitions regarding the property

of positive definite matrices and functions, which play a
fundamental role in the study of RKHS. Throughout this paper,
we apply the usual convention to use bold face letters for
vectors and normal letters for scalars. Therefore x, y denote
vectors whilst x, y denote scalars.

Definition II.1. (Gram Matrix) Let X be a set. Given a
function κ : X × X → R and x1, . . . , xN ∈ X , the
matrix1 K = (Ki,j)N with elements Ki,j = κ(xi, xj), for
i, j = 1, . . . , N , is called the Gram matrix (or kernel matrix)
of κ with respect to x1, . . . , xN .

Definition II.2. (Positive Definite Matrix) A real symmetric
matrix K = (Ki,j)N satisfying

vT ·K · v =
N,N∑

i=1,j=1

vivjKi,j ≥ 0,

1The term (Ki,j)
N denotes a square N ×N matrix.

for all vi ∈ R, i = 1, . . . , N , is called Positive Definite. In
matrix analysis literature, this is the definition of the positive
semidefinite matrix, but since this is a rather cumbersome
term and the distinction between positive definite and posi-
tive semidefinite matrices is not important in this paper, we
employ the term positive definite in the way presented here.
Furthermore, the term positive definite was introduced for the
first time by Mercer in kernel context (see [32]).

Definition II.3. (Positive Definite Kernel) Let X be a
nonempty set. Then a function κ : X × X → R, which for
all N ∈ N and all x1, . . . , xN ∈ X gives rise to a positive
definite Gram matrix K is called a Positive Definite Kernel.

In the following, we will frequently refer to a positive
definite kernel simply as kernel. The reason that the kernels
are so popular is that they can be regarded as a "generalized
dot product". In fact, any dot product is a kernel (of course
the opposite is not true). Several properties of dot products
(such as the Cauchy-Schwartz inequality) do have natural
generalizations to kernels (see [18], [33] and [20]).

Having dealt with the definitions of positivity, we are ready
to move on and discuss the main issue of this section. Consider
a Hilbert space H of real valued functions f defined on a set
X , with a corresponding inner product 〈·, ·〉H. We will call H
as a Reproducing Kernel Hilbert Space - RKHS, if there exists
a kernel κ : X × X → R with the following two properties:

1) For every x ∈ X , κ(x, ·) belongs to H.
2) κ has the so called reproducing property, i.e.

f(x) = 〈f, κ(x, ·)〉H, for all f ∈ H, (1)

in particular κ(x, y) = 〈κ(x, ·), κ(y, ·)〉H.
It has been shown (see [17], [33]) that to every positive

definite kernel κ there corresponds one and only one class
of functions H with a uniquely determined inner product in
it, forming a Hilbert space and admitting κ as a reproducing
kernel. In fact, the kernel κ produces the entire space H, i.e.

H = span{κ(x, ·)|x ∈ X},
where the overbar denotes the closure of the respective space.
There are several kernels that are used in practice (see [20]).
In this work, we focus on one of the most widely used, the
Gaussian Kernel:

κ(x,y) = exp

(
−‖x− y‖2

2σ2

)
, σ > 0,

due to some additional properties that it admits.
One of the powerful properties of Kernel-theory is the

introduction of non-linearity via a computationally elegant way
known to the machine learning community as the kernel trick
[20]:

"Given an algorithm which is formulated in terms
of dot products, one can construct an alternative
algorithm by replacing each one of the dot products
with a positive definite kernel κ."

The kernel trick is based on the use of the mapping Φ : X →
H : Φ(x) = κ(x, ·), which maps any element of X to an
element ofH. In addition this map has the interesting property:

〈Φ(x), Φ(y)〉H = κ(x, y). (2)
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Using the map Φ, the kernel trick transforms a non linear
problem defined on X to a linear one on the rich space H.
The next step is to solve the linear problem on H (usually
this is an easier task), which, in turn, provides a non linear
solution on X .

Another powerful tool in kernel theory is the application
of the representer theorem to regularized risk minimization
problems (see [20] [19] and [34]):

Theorem II.1 (Representer Theorem). Denote by Ω :
[0,∞) → R a strictly monotonic increasing function, by X
a set and by c : (X × R2)N → R ∪ {∞} an arbitrary loss
function. Then each minimizer f ∈ H of the regularized risk
functional

c ((x1, z1, f(x1)), . . . , (xN , zN , f(xN )) + Ω (‖f‖H) (3)

admits a representation of the form

f(x) =
N∑

n=1

αnκ(xn, x). (4)

In regression and classification tasks, c often admits the
form

c ((x1, z1, f(x1)), . . . , (xN , zN , f(xN )) =
N∑

n=1

L (zn − f(xn)) ,

where L is a suitable loss function, zn are the actual values
of the (possibly corrupted) signal at xn and f(xn) are the
reconstructed values. Usually the regularization term Ω(f)
takes the form Ω(f) = 1

2‖f‖2H. In the case of a RKHS
produced by the gaussian Kernel (which implies an infinite
dimensional space [20]) it can be shown that2

‖f‖H =
∫

X

∑
n

σ2n

n!2n
(Onf(x))2dx, (5)

with O2n = ∆n and O2n+1 = ∇∆n, ∆ being the Laplacian
and ∇ the gradient operator (see [35]). The implication of this
is that the regularization term "penalizes" the derivatives of the
minimizer. This results to a very smooth solution of the reg-
ularized risk minimization problem. In fact, this penalization
occurs in a more influential fashion than the total variation
scheme, which is often used in wavelet-based denoising (see
for example [36], [37], [38], [39], [40]). Indeed, while the
total variation penalizes only the first order derivatives, the
term ‖f‖2H penalizes derivatives of any order, resulting in very
smooth estimates.

The representer theorem plays a central role in solving
practical problems of statistical estimation. Its significance is
clear. Although we are solving an optimization problem and
we search for an estimate of a function f , in a rich space
H (possibly infinite-dimensional), the optimal solution lies in
the span of a finite number of particular kernels; i.e., those
centered on the training points x1, . . . , xN . In addition, it has
been found that for suitable choices of loss functions many
of the coefficients αn in (4) are often equal to 0. That is, the
solution can be sparse, which is in line with our desire to
guard against overfitting [19]. In the Support Vector Machines

2In the cases where X = Rm, m > 0.

literature equation (4) is called the support vector expansion.
This theorem can be generalized by the addition of some real
valued functions (which may indicate some additional a priori
knowledge of the problem), as follows:

Theorem II.2 (Semi-parametric Representer Theorem). Sup-
pose that, in addition to the assumptions of the previous
theorem, we are given Ω2 : [0,∞) → R another strictly
monotonic increasing function and a set of M real-valued
functions {ψk}M

k=1 : X → R, with the property that the N×M
matrix (ψp(xn))n,p has rank M. Then any f̃ := f + ψ, with
f ∈ H and ψ ∈ H = span{ψk}, where ‖ · ‖ is a norm defined
in H, minimizing the regularized risk functional

c ((x1, z1, f(x1)), . . . , (xN , zN , f(xN )) + Ω (‖f‖H)
+ Ω2 (‖ψ‖) (6)

admits a representation of the form (e.g. [20])

f̃(x) =
N∑

n=1

αnκ(xn,x) +
M∑

k=1

βkψk(x). (7)

III. APPLICATION OF RKHS THEORY TO THE DENOISING
PROBLEM

As it is usually the case, we model the noisy image as

f̂(x, y) = f(x, y) + η(x, y), (8)

for x, y ∈ [0, 1], where f is the input image and η the additive
noise [41]. Given f̂ , the objective of any denoising method-
ology is to obtain an estimate of the original image. Usually,
this is carried out by exploiting some extra knowledge about
the noise term. In contrast, our method needs no additional
information with respect to the pdf of η.

A. Problem formulation in RKHS
Let fi,j and f̂i,j be the restrictions of f and f̂ on the N×N

orthogonal region centered at the pixel (i, j) of each image
accordingly (N is an odd number, in order to have a central
pixel, see figure 1). Our task is to estimate fi,j , given the
samples of f̂i,j . For simplicity, we drop the i, j indices and
consider fi,j and f̂i,j (which from now on will be written
as f and f̂ ) as functions defined on [0, 1] × [0, 1] (and zero
elsewhere). The pixel values of the digitized image are given
by f(xn, ym) and zn,m = f̂(xn, ym), where xn = n/(N−1),
ym = m/(N −1) for n, m = 0, 1, . . . , N −1. (Note that from
this point on, we drop the xn notation and use, instead, the
notation (xn, ym), to account for each pixel.)

The idea is to consider our image f as a function in a RKHS
H. We assume that the RKHS H is generated by the Gaussian
kernel:

κ ((x, y), (x′, y′)) = exp

(
−|x− x′|2 + |y − y′|2

2σ2

)
,

for σ > 0. Then to obtain f we may solve the regularized risk
minimization problem:

minimize
f∈H,h∈R

c(f, h) =
N−1∑
n=0

N−1∑
m=0

|f(xn, ym) + h− zn,m|

+
λ

2
‖f‖2H. (9)
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Fig. 1. An orthogonal N ×N region centered at a pixel.

This is reasonable, since we want the denoised image to be
smooth (recall that usually a RKHS is comprised of smooth
functions). Note, that a threshold h has explicitly been used,
as it is commonly used in the support vector regression
(SVR) rationale. It turns out that this is important in order
to counteract the effect of the regularizer, which also affects
the leveling of the solution (i.e. the regularizer penalizes the
values of the function and its derivatives, see (5)). To solve this
problem, we use the celebrated representer theorem (theorem
II.1), which, now, ensures that the minimizer f̃ will have a
finite representation in H + R (where R = {g : R2 → R :
g(x, y) = h, for h ∈ R}), i.e.

f̃min(·, ·) =
N−1∑
n=0

N−1∑
m=0

αn,mκ ((xn, ym), (·, ·)) + h, (10)

where the notation f̃min(·, ·) denotes that f̃min is a function of
two variables (the same is true for κ ((xn, ym), (·, ·))). Note
that in (9) the cost function used is the l1 norm. This has a
two fold advantage. It guards against outliers and also, it is in
line with our desire to obtain as sparse solutions as possible,
as this is well documented in compressed sensing literature
[42].

Having stated the problem, our goal now becomes to esti-
mate the values of the parameters, αn,m, n,m = 0, . . . , N−1,
h in (10). To this end, (10) is substituted in (9) and the re-
spective optimization has to be carried out. However, note that
the cost function, defined by the l1 norm, is not differentiable.
Hence the notion of the subgradient (see appendix A) has to
be mobilized. In this paper the well known Polyak’s Projected
Subgradient Method (see [43]) has been employed. Polyak’s
algorithm solves for the optimal value of x iteratively and it
can be summarized in the following recursion:

xn+1 = xn − γn · ∇c(xn)
‖∇c(xn)‖ , (11)

where c(x) is the cost function of the minimization prob-
lem, γn is an arbitrary sequence such that

∑∞
n=0 γn = ∞,∑∞

n=0 γ2
n < ∞ and ∇c(x) is any subgradient of c at x. To

implement the algorithm in the case of (9), we need to compute
any of the subgradients ∇c(f, h). Taking into account that
f(x, y) = 〈f, κ ((x, y), (·, ·))〉H, we can deduce (after some
algebra) that a suitable choice is:

∇c(f, h) =
(∇fc(f, h)
∇hc(f, h)

)
, (12)

where ∇fc(f, h) and ∇hc(f, h) are defined as follows (see
Appendix A):

∇cf (f, h) =
N−1∑
n=0

N−1∑
m=0

sign (f(xn, ym) + h− zn,m) ·

· κ ((xn, ym), (·, ·)) + λ · f, (13)

∇ch(f, h) =
N−1∑
n=0

N−1∑
m=0

sign (f(xn, ym) + h− zn,m) . (14)

Under the above formulation, the proposed denoising algo-
rithm can be summarized in the following three steps:
• For each pixel (i, j) do:

– Form the N ×N "pixel centered" region f̂ .
– Solve the minimization problem (9) for that particu-

lar region.
– Move to the next pixel.

Note that each pixel is assigned to N2 different values (since
it belongs to the each one of the N2 regions of its neighboring
pixels). The actual value that we assign to each pixel is the
mean of these values.

Figure 2 shows the results obtained by the application of
the previous algorithm on Lena. One can immediately see
that the result of the denoising process is a blurry image.
The noise has been removed successively, but in the process
most of the fine details have been lost. The same problem
can be observed in other kernel-based denoising approaches
such as the one in [29] (see figure 4). This is where the
semi-parametric representer theorem comes into the scene as
a means for sparse modeling of regions with edges. Note that
the same problem of over-smoothening was also observed in
[14], when gaussian kernels were considered, albeit the two
methodologies are fundamentally different. In our case over-
smoothening results from the fact that RKHS are extremely
smooth spaces and therefore not well suited to represent strong
edges.

Remark III.1. We have used the notation H+R, in a rather
"naive" way. In Appendix B, a more rigorous elaboration is
provided.
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(a) (b)

Fig. 2. (a) Lena corrupted by 20% of impulse noise, (b) the denoised result without semi-parametric modeling (PSNR=28.6 dB). Most of the fine details
have been lost.

B. Semi-parametric formulation

In this section, we adopt the semi-parametric modeling, as
the means to remedy the smoothing effects associated with
the problem formulation of the previous section. Moreover,
we will attack the problem not by ad-hoc techniques, but
by a theoretically sound modeling. We consider a set of real
valued two dimensional functions {ψk, k = 1, . . . , K}, that
can adequately model edges. Various types of functions can
be used. In our experiments we used bivariate polynomials of
order 1, functions of the form Erf(a · x + b · y + c), where Erf
is the error function, i.e.

Erf(x) =
2√
π

∫ x

0

e−t2dt,

(which can approximate ridges - see figure 3(a), (b)) as well
as functions of the form Exp(−(a · x + b · y + c)2) (see figure
3(c)) for several suitable choices of a, b and c. The regularized
risk minimization problem is now reformulated as follows:

minimize
f∈H, β∈RK ,h∈R4

c(f, h,β) =

1
N2

N−1∑
n=0

N−1∑
m=0

∣∣∣f(xn, ym) + h0 + h1xn + h2ym + h3xnym

+
K∑

k=1

βkψk(xn, ym)− zn,m

∣∣∣ +
λ

2N2
‖f‖2H

+
µ

2K

K∑

k=1

β2
k +

µ1

2

3∑

l=1

h2
l , (15)

where β = (β1, . . . , βK), h = (h0, h1, h2, h3). In this case,
the minimizer f̃ belongs to the space H+Ψ+P , where Ψ =
span{ψk, k = 1, . . . ,K} and P is the space of the bivariate
polynomials of order 1 (see Appendix B). In other words, we
recast problem (9), to account for some extra parameters, i.e.
βk, k = 1, . . . , K, hi, i = 0, . . . , 3 (that contribute to the
preservation of the fine details of the image), which are also
regularized. This approach (learning edge models from a rich
set of basis functions) is similar to the modeling taken by the
K-SVD algorithm [31].

The semi-parametric theorem II.2 ensures that the minimizer

will have a finite representation of the form:

f̃(x, y) =
N−1∑
n=0

M−1∑
m=0

αn,mκ((xn, ym), (x, y))

+
M∑

k=1

βkψk(x, y) + h0 + h1x + h2y + h3xy. (16)

Once more, we can solve this problem using Polyak’s
Projected Subgradient Method. The necessary selected sub-
gradients are given below:

∇c(f, h, β) =(∇cf (f, h, β),∇ch0(f, h, β), ...,∇ch3(f, h,β),

∇cβ1(f, h, β), . . . ,∇cβK
(f, h,β))T , (17)

where

∇cf (f, h,β) =
1

N2

( N−1∑
n=0

N−1∑
m=0

sign (en,m(f, h, β)) ·

· κ ((xn, ym), (·, ·)) + λ · f
)
, (18)

∇ch0(f, h, β) =
1

N2

(
N−1∑
n=0

N−1∑
m=0

sign (en,m(f, h, β))

)
,

(19)

∇ch1(f, h, β) =
1

N2

(
N−1∑
n=0

N−1∑
m=0

sign (en,m(f, h, β)) · xn

)

+ µ1 · h1, (20)

∇ch2(f, h, β) =
1

N2

(
N−1∑
n=0

N−1∑
m=0

sign (en,m(f, h, β)) · ym

)

+ µ1 · h2, (21)

∇ch3(f, h, β) =
1

N2

(
N−1∑
n=0

N−1∑
m=0

sign (en,m(f, h, β)) · xnym

)

+ µ1 · h3, (22)
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Fig. 3. Some of the functions ψk that are used to represent edges. (a) Erf(8x− 8y − 2), (b) Erf(8x− 4), (c) Exp(−(8x− 4)2).

and

∇cβk
(f, h, β) =

1
N2

( N−1∑
n=0

N−1∑
m=0

sign (en,m(f, h, β)) ·

· ψk(xn, ym)
)

+
µ

K
· βk, (23)

for k = 1, . . . , K, where the en,m(f, h, β) term is given by:

en,m(f, h, β) =f(xn, ym) + h0 + h1xn + h2ym+

h3xnym +
K∑

k=1

βkψk(xn, ym)− zn,m.

C. The algorithm

The choice of the regularization parameters µ, µ1 (espe-
cially the first one) plays an important role in the edge-
preservation properties of the algorithm. Roughly speaking,
we adjust µ and µ1 so that they take small values around
edges and large values in smoother areas (the regularization
parameter λ is kept fixed). The reason for this approach is
quite obvious. Small values for the regularization parameters,
µ and µ1, enhance the contribution of the semi-parametric
part, which is desirable around edges. On the other hand, in
smoother regions, the effect of the semi-parametric part of the
algorithm needs to be suppressed. Thus, larger values for µ,
µ1 are adopted. As the algorithm moves from one pixel to
the next (with user-defined step sizes, s), it decides whether
the corresponding pixel-centered region contains edges or not
(in order to compute a proper value for µ and µ1) and it
solves the corresponding minimization problem; that is, either
(9) or (15), depending on the "degree of smoothness" of the
specific region. More specifically, we consider L different
types of smoothness, where L is a user defined parameter.
The smoothness of each region is determined by the value of
the mean gradient in the region. We consider L distinct cases
for the regions, depending on how large the respective mean
gradient is. Once the type of region has been decided, we
assign values to µ and µ1 accordingly. This is accomplished
using the values of the vectors (L elements each) µ and µ1.
The elements µi and µ1,i contain the regularization values
associated with any region of type i. The input parameters of
the algorithm and their usage are shown in table I. In effect,
the proposed method gives higher weight to kernel smoothing
in smooth regions and performs sparse modeling for edge
regions.

In order to compute the mean gradient in each one of the
regions, and therefore assign each region to a specific type

i, a preprocessing step is first required. The regularization
parameters µ and µ1 are fixed (i.e., they are given initial
values) and the minimization problem (15) is solved for all
regions, moving from one pixel to the next (at this step,
each region has size N0 × N0, where N0 is a user-defined
initial value). This first estimate of the denoised image (which
contains much less noise from the original noisy one) is used
to compute the gradients during the second step. The process
is repeated, however this time, each region is assigned to a
specific type i, 1 ≤ i ≤ L (according to the "degree" of
smoothness). Thus, the respective values µi and µ1,i are used
for the regularization. The second image estimate contains
even less noise and the iteration continues (usually no more
than 3 steps are needed).

To assign a region to a specific type, we use the respective
mean gradient (obtained after the preprocessing step) and the
information contained in the vector p (L elements that sum
up to 1). If the mean gradient of the region is larger than the
100 · (1 − p1)% of the mean gradients of all regions, then
the region is of type 1 (strongest edge). If the region is not
of type 1 and its mean gradient is larger than the 100 · (1 −
p2)% of the mean gradients of all regions, then the region
is of type 2, e.t.c. In smooth regions (i.e., type 6 or 5) we
solve (9), while in regions which contain edges we solve the
minimization problem (15), using the corresponding µi and
µ1,i depending on the "smoothness degree". The actual size
of each pixel-centered region is defined by the vector N (see
table I). The latter is a vector of dimension L. Its i-th element,
i.e., Ni, defines the size Ni×Ni of the respective window for
regions of the i-th type. These are user-defined variables and
the values used in the context of this paper are shown in Tables
II-VI. This concept of variable size windows has previously
been used in the context of median filtering (e.g. [44]).

The computation of the mean gradient is performed at the
beginning of each iteration. In particular, at each pixel, we
compute the mean gradient of a Nmax×Nmax window centered
at the specific pixel, where Nmax = max{N1, . . . , NL}. As a
consequence, a mean gradient is assigned to each pixel of the
image. Everytime the algorithm tries to assign a region to a
specific type, it exploits the value of the mean gradient of the
pixel at the center of that particular region.

The last algorithmic issue is how the final values of pixels
are computed. Keep in mind that, each region centered at a
specific pixel assigns values to all its neighbors. This means
that each pixel is assigned to as much as N2 discrete values
(possibly less, if the step sizes are taken to be larger than
1). There are two solutions to this problem. The final value
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(a) (b) (c)

Fig. 4. (a) Lena (256× 256) corrupted by impulse noise, (b) the denoised image according to kernel PCA denoising presented in [29] (PSNR=26.14 dB),
(c) the denoised image according to the proposed method (PSNR=27.43 dB). The difference in quality is increased significantly if the 512× 512 version of
Lena is used.

of the pixel can be computed either as the mean of all the
aforementioned values, or alternatively, as the value assigned
to it by its corresponding region (i.e., the region centered at
the pixel in question). For impulse noise removal, the latter
solution seems to result to slightly better performance.

Finally, the problem of the selection of functions ψ suitable
to represent edges must be addressed. As mentioned in section
III-B, we employed bivariate polynomials of order 1, functions
of the form Erf(a · x + b · y + c) and functions of the form
Exp(−(a · x + b · y + c)2), for several suitable choices of a, b
and c. In particular, for regions of size 5× 5, 44 functions are
used (mainly rotations and translations of the ones shown in
figure 3), for regions of size 7× 7, 52 functions are used and
for 9×9 regions, 76 functions are considered. Also, we should
emphasize that the choice of the collection of ψ functions is far
from critical. It is possible that a larger set of suitable functions
would enhance the results, but it would increase the computing
time significantly. In other words, these functions can be
considered as rich enough "basis" to account for the different
orientations as well as locations of the edges within each win-
dow. The choice of their number and the respective parameters
has been the result of extensive experimentation. The exact
values of the parameters are not critical, as long as a rich
enough representation has been achieved. Relevant details can
be found in http://cgi.di.uoa.gr/∼stheodor/ker_den/index.htm.
The algorithm is given below in a more detail.

Kernel Denoising Algorithm
1) Input: f̂ (the noisy image), N0, λ, µ0, L, µ, µ2, p, c,

N , m, ν, s.
2) (Initialization step) For each pixel do:

a) Take the N0 ×N0 neighborhood of the pixel
b) Solve the optimization problem (15) using the

parameters λ, µ0.
c) Put the solution to the denoised image f1.
d) Move to the next pixel using the step s1

3) Set Nmax = max{N1, . . . NL}
4) for r = 2 to ν do:

a) At each pixel, compute the mean gradient of all
pixels in the corresponding Nmax×Nmax neighbor-
hood of image fr−1.

b) Sort the values of the gradients in a descending
order.

c) For each pixel do:
i) Compute the type i of the region according to

the mean gradient and the information stored
in p (see table I).

ii) Take the Ni ×Ni neighborhood of the current
pixel of the image fr−1

iii) Set µ = mui and µ1 = mu1,i (see table I).
iv) Take the (noisy) region of image f̂ centered at

the specified pixel and solve the optimization
problem with the parameters λ, µ, µ2 using the
Polyak’s Projected Subgradient Method. The
problem to be solved is either (9) or (15),
according to the type of the region. This in-
formation is stored in mi.

v) Put the solution to the denoised image fr.
vi) Move to the next pixel using the step sr.

5) Output: The denoised image fν .

IV. EXPERIMENTS

The kernelized algorithm was implemented in C. The source
code along with all the images used in the paper can be found
at http://cgi.di.uoa.gr/∼stheodor/ker_den/index.htm.3, for the
sake of reproducibility of results [45]. Experiments were
conducted on several test images contained in the Waterloo
Image Repository (see [46]), which were corrupted with
various types of synthetic noise. The results were compared
with those obtained using several state of the art models
(BiShrink4 - [3], [4], [15], ProbShrink5 - [47], BLS-GSM6

- [2], K-SVD7 -[31], SKR8 - [14], BM3D9 - [5]). We note
that in all cases the input parameters were carefully adjusted
to obtain the best possible results with respect to PSNR (in
most cases this approach led to better visual quality too). The

3In this page the interested reader can found many more test images.
4Using the code provided at http://taco.poly.edu/WaveletSoftware/denoise2.html
5Using the code provided at http://www.pudn.com/downloads150/sourcecode/windows/multimedia/detail651732_en.html
6Using the code provided at http://decsai.ugr.es/∼javier/denoise
7Using the code provided at http://www.cs.technion.ac.il/∼elad/software.
8Using the code provided at http://users.soe.ucsc.edu/∼htakeda/kernelToolbox.htm.
9Using the code provided at http://www.cs.tut.fi/∼foi/GCF-BM3D
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TABLE I
DESCRIPTION OF THE INPUT PARAMETERS OF THE ALGORITHM.

Parameter Type Usage
L integer The number of distinct types of regions depending on the "degree of smoothness".

N0 odd integer The size of the pixel-centered region for the initial step.
µ0 real The value for µ and µ2 for the initial step of the algorithm.

p

This vector is used to detect the type of region.
vector (L elements) If the mean gradient of the region is larger than the 100 · (1 − p1)% of the mean gradients

that sum up to 1 of all regions, then the region is of type 1 (strongest edge). If the region is not of type 1
and its mean gradient is larger than the 100 · (1 − p2)% of the mean gradients of all
regions, then the region is of type 2 e.t.c.

N vector (L elements) This vector contains the values of N (the size of the region) that will be
considered at each pixel according to its type. If the region is of type i then N = Ni .

µ vector (L elements) This vector contains the values of µ that will be used to each region according to its type.
If the region is of type i then µ = mui .

µ2 vector (L elements) This vector contains the values of µ2 that will be used to each region according to its type.
If the region is of type i then µ2 = mu2,i .

ν integer the number of iteration steps.
s vector (ν elements) the step size from one pixel to the next for each iteration.
λ real the regularization parameter of the optimization problem.
σ real the parameter of the gaussian kernel.

results show that the reproducing kernel approach performs
almost as well as BiShrink in the presence of Gaussian
noise. However, it outperforms significantly kernel or wavelet-
based methods when impulse or mixed noise is considered.
This enhanced performance is obtained at the cost of higher
complexity, which is basically contributed by the optimization
step, which is of the order of O(N2) per pixel. In terms
of absolute execution times, the proposed algorithm seems
to have the same performance as the SKR algorithm ([14]).
Thus on a 512× 512 image the algorithm may need up to ten
minutes to complete. Currently, more efficient optimization
algorithms are considered. Moreover, the whole setting is
open to a straightforward parallelization, when a parallel
processing environment is available. This is also currently
under consideration.

It should be noted that, although the kernel based algorithm
presented in this paper, at a first look, has many input
parameters (as shown in Table I), most of them were kept
constant. In particular, L = 6, µ = (0.01, 0.1, 0.5, 5, 50, 100),
µ2 = (0, 0, 0, 0.1, 1, 3), µ0 = 0.1, m = (2, 2, 1, 1, 1, 0),
ν = 3, s = (3, 3, 1), λ = 1, σ = 3. Loosely speaking, this
means that 6 types of regions are considered: the first two
are regions that contain strong edges (thus smaller values for
µ are taken and a large number of iterations is used as the
values of m indicate), the next three are regions with soft
edges and the last type is for smooth regions. In addition for
all the examples we set c = (1, 1, 1, 1, 1, 1). Therefore the
only parameters that need to be selected by the user are the
vectors N and p. The values of N depend on the amount of
the additive noise (as it is the case in median filters; the larger
the noise the larger the values of the elements of N ), while
the values of p depend on the percentage of edges in the
image. Although N contains six elements, only two values
need to be set. One that corresponds to strong and softer
edges (the first three elements of N ) and one that corresponds
to smooth regions (the last three elements - see tables II
- VI). In the presented tests the vector N typically takes
the values (5, 5, 5, 5, 5, 5), (5, 5, 5, 7, 7, 7), (7, 7, 7, 7, 7, 7) and
(7, 7, 7, 9, 9, 9), while p is (0.1, 0.1, 0.1, 0.1, 0.2, 0.2) for im-
ages with a medium amount of edges (such as lena and
peppers) and (0.2, 0.2, 0.1, 0.1, 0.2, 0.4) for images which
contain many edges (such as barbara and boat). Once more,
we emphasize the low sensitivity of the algorithm to the input
parameters.

A. Impulse Noise

Two types of impulse noise are considered. The first, which
we call type 1, is the typical (bipolar) impulse noise with pdf:

p(z) =
{

p, if z = a, or z = −a
1− 2p, otherwise, (24)

for some 0 ≤ p ≤ 1
2 , a > 0. This means that approximately

200p% of the pixels will be corrupted. The second type of
impulse noise (type II) has uniformly distributed impulses, i.e.
200p% of the pixels will be corrupted with additive uniform
noise in the range [−a, a], for some 0 ≤ p ≤ 1

2 , a > 0. In both
types of impulse noise the proposed algorithm gives excellent
results (both visually and in terms of PSNR). The wavelet-
based techniques are known not to be able to deal with impulse
noise effectively. Results show that the proposed kernel-based
noise removal algorithm can achieve an improvement of more
than 5dB (some times up to 10dB) in terms of PSNR, over
most wavelet-based methods and much better visual quality
(even in cases where the difference of PSNRs is relatively
small). The same is true for most other methods such as
K-SVD and SKR. Moreover, the kernelized approach gives
significantly enhanced results over the traditional median filter,
especially in visual quality. The only method that yields
competitive results (in terms of PSNR) is the SKR variant
that uses the L1 norm, although in most cases the difference
is more than 1 dB and the noise is not removed effectively
(see figures 6, 7). The denoised images obtained by the BM3D
algorithm, which are superior to the ones obtained by other
kernel based or wavelet based methods, yield significant loss
in details and a difference of 1-3 dBs in comparison to
the proposed methodology. In the case of Barbara, although
BM3D results in higher PSNR than the proposed kernel based
methodology, there is a significant loss in fine details as it can
been seen, for example, in figure 8. In figure 8(c), it can be
observed that the face of Barbara is distorted and the texture of
the chair (behind her), as well the texture of the table clothe,
are blurred compared to the image obtained by the proposed
kernel based methodology, as it becomes evident in figure 8(b).
There are, of course, some other regions (patterns in the pants
and scarf) that BM3D restores better. Tables II, III and figures
5-9 report the results of the kernelized denoising algorithm on
Lena, Peppers, Barbara and Boat images corrupted by various
types of impulse noise.
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B. Gaussian Noise

The pdf of the zero-mean gaussian noise is given by:

p(z) =
1√
2πs

e−
z2

2s2 , (25)

where z represents the gray level and s is the standard
deviation (the average value of z is 0). It is well known that
70% of the values of z will be in the range [−s, s] and 95%
will be in the range [−2s, 2s]. Most wavelet based methods
were developed especially for this kind of noise (mainly
because of its mathematical tractability in both spatial and
frequency domains). The BM3D algorithm developed in [5]
is reported to be one of the best approaches in gaussian noise
removal. Its performance shows an average improvement of
approximately 2 dBs (sometimes more) over the kernel-based
approach. In many cases, our method seems to have similar
behavior (in terms of PSNR) with another very well known
wavelet-based algorithm called BiShrink10 (see [3], [4]). Table
IV and figures 10-11 report the results of the experiments
conducted on several images corrupted by gaussian noise.

C. Uniform Noise

The pdf of the zero-mean uniform noise is given by

p(z) =
{

1
2a , if − a ≤ z ≤ a
0, otherwise, (26)

for a > 0. Its variance is σ2 = a2

3 .
The kernelized denoising algorithm performs relatively well

in the presence of uniform noise, but wavelet-based methods
clearly give better results both visually and in terms of PSNR
(see Table V).

D. Mixed Noise

We included in the simulated experiments several images
corrupted by mixed noise of various types as specified below:
mixed 1: 20% of impulse noise (type II, a = 128) + gaussian
noise with s = 10.
mixed 2: 30% of impulse noise (type II, a = 128) + gaussian
noise with s = 20.
mixed 3: uniform noise in the interval [−10, 10] + gaussian
noise with s = 10.
mixed 4: uniform noise in the interval [−10, 10] + 10%
impulse noise (type II, a = 128).
mixed 5: uniform noise in the interval [−10, 10] + 10%
impulse noise (type II, a = 128) + gaussian noise with
s = 10.

The results are reported in table VI and figures 12-14.
The kernelized denoising method can effectively remove any
of these types of mixed noise. In the presence of noise
with impulse components, the proposed algorithm seems to
outperform all other techniques in most cases both in visually
quality and in terms of PSNR.

10This is also true for ProbShrink ([47]).

V. CONCLUSIONS

A novel denoising algorithm was presented based on the use
of Reproducing Kernel Hilbert Spaces. The semiparametric
Representer Theorem was exploited in order to cope with the
problems associated with the smoothing around edges, which
is a common problem in almost all denoising algorithms. The
comparative study against wavelet based techniques, showed
that significantly enhanced results are obtained in the case of
impulse noise. In the case of gaussian noise, the proposed
algorithm performs quite well (in terms of PSNR the results
are similar with BiShrink). In addition the kernelized approach
can effectively treat any type of mixed noise, resulting at sig-
nificantly better results than wavelet-based methods, especially
if impulse components are present. The previously reported
enhanced performance is achieved at a higher computational
complexity.

APPENDIX A
DIFFERENTIABILITY OF OPERATORS

Since gradients and subgradients of operators defined in
Hilbert spaces play a crucial role in several parts of this paper,
it is important to present their formal definitions and their key
properties.

Definition A.1. Consider an operator T : H → R, where (H ,
〈·, ·〉H ) is a Hilbert space. T is said to be Fréchet differentiable
at x0, if there exists a y ∈ H such that

lim
‖h‖H→0

T (x0 + h)− T (x0)− 〈y, h〉H
‖h‖H

= 0, (27)

where ‖ · ‖H =
√
〈·, ·〉H is the induced norm. Usually, the

element y ∈ H is called the gradient of T at x and the notation
y = ∇T (x0) is used to refer to it11.

For convex functions defined on Hilbert spaces the gradient
at x0 satisfies the well known first order condition:

T (z) ≥ T (x0) + 〈∇T (x0), z − x0〉.
for all z. This condition has a simple geometric meaning when
T is finite at x0: it says that the graph of the affine function
h(z) = T (x0)+〈∇T (x0), z−x0〉 is a non-vertical supporting
hyperplane to the convex set epi T 12 at (x0, T (x0)). In other
words, (a) h(z) defines an osculant hyperplane of the graph of
T at (x0, T (x0)) and (b) all the points of the graph of T lie
at the same side of the hyperplane. This is one of the reasons
why the notion of gradient is so important in optimization
problems. If T is not differentiable at x, we can still construct
such a hyperplane using a subgradient.

Definition A.2. Let T : H → R be a convex function defined
on a Hilbert space (H , 〈·, ·〉H ). A vector x∗ ∈ H is said to
be a subgradient of T at x0 if

T (z) ≥ T (x0) + 〈x∗, z − x0〉H .

11In the literature the notation T ′(x) is also used to refer to the gradient
of T at x.

12epi T denotes the epigraph of T , i.e. the set {(x, y) : x ∈ H, y ∈ R :
T (x) ≤ y}.
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(a) (b) (c)

Fig. 5. (a) Lena corrupted by 20% of impulse noise of type II, (b) denoising using the kernel approach (PSNR=35.27 dB), (c) denoising with BiShrink
(PSNR=22.83 dB).

(a) (b) (c)

Fig. 6. (a) Lena corrupted by 40% of impulse noise of type II, (b) denoising using the kernel approach (PSNR=31.78 dB), (c) denoising with SKR -L1

(PSNR=31.33 dB).

(a) (b) (c)

Fig. 7. (a) Lena corrupted by 50% of impulse noise of type II, (b) denoising using the kernel approach (PSNR=30.71 dB), (c) denoising with SKR - L1

(PSNR=29.05 dB).

(a) (b) (c)

Fig. 8. (a) Barbara corrupted by 40% of impulse noise of type II, (b) denoising using the kernel approach (PSNR=24.81 dB), (c) denoising with BM3D
(PSNR=27.05 dB).
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(a) (b) (c)

Fig. 9. (a) Boat corrupted by 40% of impulse noise of type II, (b) denoising using the kernel approach (PSNR=29.14 dB), (c) denoising with BM3D
(PSNR=27.26 dB).

(a) (b) (c)

Fig. 10. (a) Lena corrupted by gaussian noise with s = 10, (b) denoising using the kernel approach (PSNR=33.98 dB), (c) denoising with BiShrink
(PSNR=34.33 dB).

(a) (b) (c)

Fig. 11. (a) Boat corrupted by gaussian noise with s = 20, (b) denoising using the kernel approach (PSNR=29.46 dB), (c) denoising with BM3D (PSNR=31.65
dB).

The set of all subgradients of f at x0 is called the subdiffer-
ential of T at x0 and is denoted by ∂T (x).

As an example, we consider the operator T (f) = ‖f(x0)−
y0‖, defined on a RKHS H, where x0 ∈ Rn and y0 ∈ R
(in other words we take a simple form of a cost function
that employs the l1 norm). Using the kernel properties (see
section II) we take f(x0) = 〈f, κ(x0, ·)〉. Thus T (f) =
‖〈f, κ(x0, ·)〉− y0‖. This operator is non differentiable at any
f , such that f(x0) = y0. The subgradients of T at f are given
below:

∇T (f)(·) =





sign (f(x0)− y0) · κ(x0, ·),
if f : f(x0) 6= y0,

λκ(x0, ·), for any − 1 ≤ λ ≤ 1,
if f : f(x0) = y0.

(28)

More on the subject can be found in [48], [49], [50], [51].

APPENDIX B
SUMS OF HILBERT SPACES

Another concept, that is used in key parts of the paper, is
that of the summation of Hilbert Spaces. Here, we give a more
rigorous analysis of this important subject. Note, that there are
two distinct cases of Hilbert space’s summation: the direct sum
and the ordinary sum.

Definition B.1. Two Hilbert spaces (H1, 〈·, ·〉H1) and (H2,
〈·, ·〉H2) can be combined into another Hilbert space, called
the (orthogonal) direct sum, and denoted by H = H1 ⊕H2,
consisting of the set of all ordered pairs (x1, x2) where xi ∈
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(a) (b) (c)

(d) (e) (f)

Fig. 12. (a) Lena corrupted by gaussian noise with s = 10 and 20% of impulse noise of type II (a = 128), (b) denoising using the kernel approach
(PSNR=32.27 dB), (c) denoising with BiShrink (PSNR=25.30 dB), (d) denoising with K-SVD (PSNR=27.51 dB), (e) denoising with SKR L1 (PSNR=31.14
dB), (f) denoising with BM3D (PSNR=30.65 dB).

(a) (b) (c)

(d) (e) (f)

Fig. 13. (a) Boat corrupted by gaussian noise with s = 20 and 30% of impulse noise of type II (a = 128), (b) denoising using the kernel approach
(PSNR=26.90 dB), (c) denoising with BiShrink (PSNR=25.62 dB), (d) denoising with K-SVD (PSNR=26.56 dB), (e) denoising with SKR L1 (PSNR=26.18
dB), (f) denoising with BM3D (PSNR=27.6 dB).
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(a) (b) (c)

Fig. 14. (a) Lena corrupted by gaussian noise with s = 10, uniform noise in the interval [−10, +10] and 10% of impulse noise of type II (a = 128), (b)
denoising using the kernel approach (PSNR=32.74 dB), (c) denoising with BM3D (PSNR=31.77 dB).

(a) (b) (c)

Fig. 15. (a) Boat corrupted by uniform noise in the interval [−10, +10] and 10% of impulse noise of type II (a = 128), (b) denoising using the kernel
approach (PSNR=32.28 dB), (c) denoising with BM3D (PSNR=30.5 dB).

Hi, i = 1, 2, and inner product defined by

〈(x1, x2), (y1, y2)〉H1⊕H2 = 〈x1, y1〉H1 + 〈x2, y2〉H2 . (29)

The direct sum can be generalized to infinite sums of Hilbert
spaces (see e.g. [49]).

Definition B.2. Consider two Hilbert spaces (H1, 〈·, ·〉H1 ) and
(H2, 〈·, ·〉H2 ) subsets of the larger space F . We may define
the sum H = H1 + H2 ⊆ F , as follows:

x ∈ H, iff there are x1 ∈ H1 and x2 ∈ H2,

such that x = x1 + x2. (30)

Then H is a Hilbert space with inner product defined by

〈x, y〉H1+H2 =min{〈x1, y1〉H1 + 〈x2, y2〉H2 ,

for all x1, y1 ∈ H1, x2, y2 ∈ H2, (31)
such that x = x1 + x2, y = y1 + y2}.

The sum of Hilbert spaces can be easily generalized to
include a finite number of Hilbert spaces (see [18]). In contrast
with the direct sum, this generalization is not valid, if an
infinite number of spaces is considered. Note that in the special
case, where for each x ∈ H there is a unique decomposition
x1 +x2, x1 ∈ H1, x2 ∈ H2, the two sums coincide (i.e. there
is a 1-1 mapping between H1 +H2 and H1⊕H2). Moreover,
it is easy to see that in both cases we can define gradients and
subgradients of operators defined in the combined space H .

In sections III-A and III-B the sums H+R and H+Ψ+P
were used in a rather superficial way. However, in light of
the information given before, one may easily see that each

element of H + R can be uniquely decomposed into f + g,
where f ∈ H and g ∈ R (in fact f lies in a finite dimensional
subspace of H) and thus to conclude that the sum H+ R can
be identified to the space H⊕R. Hence, we don’t have to use
the cumbersome inner product (and respective norm) given in
(31) to compute the gradients. Instead, we employ the more
elegant inner product associated to the direct sum definition
in (29).

With the same rationale, the space H+ Ψ +P can be also
identified to the space H⊕Ψ⊕P . Indeed, It is easy to see that
if we select the functions ψk properly (i.e. so that they cannot
be decomposed into a finite sum of gaussian kernels and/or
bivariate polynomials of order 1), then each f̃ ∈ H + Ψ + P
is uniquely decomposed into f +ψ + p where f ∈ H, ψ ∈ Ψ,
p ∈ P .
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TABLE II
RESULTS OF THE KERNELIZED DENOISING METHOD ON VARIOUS IMAGES (WITH DIMENSIONS 512× 512) CORRUPTED BY IMPULSE NOISE OF TYPE I,

FOR a = 100.

Image Noise noisy PSNR Kernel Denoising BiShrink Median
N denoised PSNR

Lena

20% 15,77 dB (5, 5, 5, 5, 5, 5) 34,31 dB 24,57 dB 30.7 dB
30% 14.01 dB (7, 7, 7, 7, 7, 7) 32.07 dB 26.19 dB 28.3 dB
40% 12.76 dB (7, 7, 7, 7, 7, 7) 30.28 dB 26.19 dB 26.97 dB
50% 11.78 dB (7, 7, 7, 9, 9, 9) 28.53 dB 24.43 dB 25.1 dB

Peppers

20% 16,10 dB (5, 5, 5, 5, 5, 5) 32,27 dB 23,24 dB 30.81 dB
30% 14.31 dB (5, 5, 5, 7, 7, 7) 30,48 dB 25.37 dB 29.00 dB
40% 13.08 dB (7, 7, 7, 7, 7, 7) 29,19 dB 24.29 dB 27.64 dB
50% 12.13 dB (7, 7, 7, 9, 9, 9) 27,88 dB 23.30 dB 25.77 dB

Barbara

20% 15,81 dB (5, 5, 5, 5, 5, 5) 26,21 dB 23,45 dB 23.85 dB
30% 14.07 dB (5, 5, 5, 7, 7, 7) 24,92 dB 23.47 dB 22.41 dB
40% 12.78 dB (7, 7, 7, 7, 7, 7) 23,80 dB 22.78 dB 22.00 dB
50% 11.81 dB (7, 7, 7, 9, 9, 9) 22,88 dB 22.28 dB 21.88 dB

Boat

20% 15.92 dB (5, 5, 5, 5, 5, 5) 31,04 dB 24.04 dB 228.37 dB
30% 14.14 dB (5, 5, 5, 7, 7, 7) 28,86 dB 24.73 dB 26.00 dB
40% 12.90 dB (7, 7, 7, 7, 7, 7) 27,62 dB 24.91 dB 25.05 dB
50% 11.92 dB (7, 7, 7, 9, 9, 9) 25,88 dB 23.30 dB 23.31 dB

TABLE III
RESULTS OF THE KERNELIZED DENOISING METHOD ON VARIOUS IMAGES (WITH DIMENSIONS 512× 512) CORRUPTED BY IMPULSE NOISE OF TYPE II,

FOR a = 128.

Image Noise noisy PSNR Kernel Denoising BiShrink K-SVD SKR L1 SKR BM3D
N PSNR

Lena

20% 18.42 dB (5, 5, 5, 5, 5, 5) 35.27 dB 22.83 dB 27.97 dB 34.72 dB 29.82 dB 31.01 dB
30% 16.60 dB (5, 5, 5, 7, 7, 7) 33.20 dB 25.90 dB 27.88 dB 33.13 dB 28.90 dB 28.74 dB
40% 15.37 dB (7, 7, 7, 7, 7, 7) 31.78 dB 26.76 dB 26.84 dB 31.33 dB 27.70 dB 28.74 dB
50% 14.41 dB (7, 7, 7, 9, 9, 9) 30.71 dB 26.41 dB 26.73 dB 29.05 dB 26.45 dB 28.20 dB

Peppers

20% 18.68 dB (5, 5, 5, 5, 5, 5) 33.01 dB 22.94 dB 28.31 dB 30.81 dB 29.75 dB 30.85 dB
30% 16.93 dB (5, 5, 5, 7, 7, 7) 31.77 dB 25.21 dB 28.06 dB 30.30 dB 28.17 dB 29.70 dB
40% 15.68 dB (7, 7, 7, 7, 7, 7) 30.50 dB 25.89 dB 26.92 dB 29.43 dB 26.78 dB 28.32 dB
50% 14.68 dB (7, 7, 7, 9, 9, 9) 29.72 dB 25.50 dB 26.15 dB 27.96 dB 25.26 dB 27.36 dB

Barbara

20% 18.42 dB (5, 5, 5, 5, 5, 5) 27.26 dB 22.86 dB 25.07 dB 25.16 dB 27.59 dB 29.54 dB
30% 16.67 dB (5, 5, 5, 7, 7, 7) 26.09 dB 24.34 dB 25.92 dB 24.66 dB 26.15 dB 28.26 dB
40% 15.43 dB (7, 7, 7, 7, 7, 7) 24.81 dB 24.28 dB 25.51 dB 24.12 dB 25.11 dB 27.05 dB
50% 14.45 dB (7, 7, 7, 9, 9, 9) 24.29 dB 23.81 dB 24.40 dB 23.41 dB 23.86 dB 26.64 dB

Boat

20% 18.56 dB (5, 5, 5, 5, 5, 5) 32.36 dB 22.59 dB 26.46 dB 31.85 dB 28.35 dB 29.45 dB
30% 16.77 dB (5, 5, 5, 5, 5, 5) 30.66 dB 25.07 dB 26.79 dB 30.85 dB 27.05 dB 28.29 dB
40% 15.52 dB (5, 5, 5, 7, 7, 7) 29.14 dB 25.40 dB 26.08 dB 29.51 dB 25.85 dB 27.26 dB
50% 14.55 dB (7, 7, 7, 7, 7, 7) 28.10 dB 25.09 dB 25.38 dB 27.73 dB 24.90 dB 26.61 dB

TABLE IV
RESULTS OF THE KERNELIZED DENOISING METHOD ON VARIOUS IMAGES CORRUPTED BY GAUSSIAN NOISE .

Image Noise noisy PSNR Kernel Denoising BiShrink BLS-GSM K-SVD SKR L1 SKR BM3D
N PSNR

Lena
s = 10 28.12 dB (5, 5, 5, 5, 5, 5) 33.98 dB 34.33 dB 35.60 dB 35.47 dB 32.66 dB 35.32 dB 35.93 dB
s = 20 22.14 dB (5, 5, 5, 7, 7, 7) 31.12 dB 31.17 dB 32.65 dB 32.36 dB 29.23 dB 32.62 dB 33.00 dB
s = 30 18.72 dB (7, 7, 7, 7, 7, 7) 29.11 dB 29.35 dB 30.50 dB 30.30 dB 26.60 dB 30.71 dB 31.21 dB

Peppers
s = 10 28.26 dB (5, 5, 5, 5, 5, 5) 32.44 dB 33.62 dB 34.71 dB 34.84 dB 29.99 dB 34.40 dB 35.03 dB
s = 20 22.32 dB (5, 5, 5, 7, 7, 7) 30.38 dB 30.67 dB 31.90 dB 31.93 dB 27.99 dB 31.84 dB 32.51 dB
s = 30 18.93 dB (7, 7, 7, 7, 7, 7) 28.60 dB 28.71 dB 29.83 dB 29.90 dB 26.01 dB 29.92 dB 20.73 dB

Barbara
s = 10 28.11 dB (5, 5, 5, 5, 5, 5) 27.60 dB 32.46 dB 34.02 dB 34.79 dB 25.41 dB 33.37 dB 35.37 dB
s = 20 22.16 dB (5, 5, 5, 7, 7, 7) 26.01 dB 28.56 dB 30.27 dB 31.12 dB 24.36 dB 30.06 dB 32.10 dB
s = 30 18.73 dB (7, 7, 7, 7, 7, 7) 24.06 dB 26.46 dB 28.05 dB 28.61 dB 23.17 dB 27.85 dB 30.01 dB

Boat
s = 10 28.13 dB (5, 5, 5, 5, 5, 5) 31.78 dB 33.29 dB 34.52 dB 34.77 dB 30.95 dB 34.03 dB 35.08 dB
s = 20 22.19 dB (5, 5, 5, 7, 7, 7) 29.25 dB 29.68 dB 30.90 dB 31.12 dB 28.29 dB 30.83 dB 31.65 dB
s = 30 18.73 dB (7, 7, 7, 7, 7, 7) 27.34 dB 27.79 dB 28.90 dB 28.93 dB 25.95 dB 28.79 dB 29.72 dB

TABLE V
RESULTS OF THE KERNELIZED DENOISING METHOD ON VARIOUS IMAGES CORRUPTED BY UNIFORM NOISE .

Image Noise noisy PSNR Kernel Denoising BiShrink K-SVD SKR L1 SKR BM3D
N PSNR

lena
±20 26.88 dB (5, 5, 5, 5, 5, 5) 33.00 dB 33.66 dB 34.33 dB 31.20 dB 34.73 dB 34.99 dB
±30 23.36 dB (5, 5, 5, 7, 7, 7) 30.81 dB 31.84 dB 32.34 dB 28.82 dB 33.20 dB 33.51 dB
±40 20.85 dB (7, 7, 7, 7, 7, 7) 29.41 dB 30.51 dB 31.00 dB 26.82 dB 32.03 dB 32.01 dB

Peppers
±20 27.00 dB (5, 5, 5, 5, 5, 5) 31.78 dB 33.05 dB 33.89 dB 29.13 dB 33.96 dB 34.42 dB
±30 23.50 dB (5, 5, 5, 7, 7, 7) 30.28 dB 31.31 dB 32.10 dB 27.65 dB 32.38 dB 32.94 dB
±40 21.05 dB (7, 7, 7, 7, 7, 7) 28.81 dB 29.96 dB 30.68 dB 26.14 dB 31.17 dB 31.57 dB

Barbara
±20 26.87 dB (5, 5, 5, 5, 5, 5) 27.16 dB 31.60 dB 33.43 dB 24.94 dB 32.70 dB 34.13 dB
±30 23.35 dB (5, 5, 5, 7, 7, 7) 25.95 dB 29.24 dB 31.02 dB 24.31 dB 30.75 dB 32.66 dB
±40 20.87 dB (7, 7, 7, 7, 7, 7) 24.19 dB 27.72 dB 29.76 dB 23.47 dB 29.35 db 30.90 dB

Boat
±20 26.88 dB (5, 5, 5, 5, 5, 5) 31.15 dB 32.48 dB 33.64 dB 29.81 dB 33.37 dB 34.09 dB
±30 23.39 dB (5, 5, 5, 7, 7, 7) 29.38 dB 30.40 dB 30.94 dB 27.98 dB 31.49 dB 32.11 dB
±40 20.92 dB (7, 7, 7, 7, 7, 7) 27.47 dB 29.02 dB 30.11 dB 26.21 dB 30.17 dB 30.40 dB

TABLE VI
RESULTS OF THE KERNELIZED DENOISING METHOD ON VARIOUS IMAGES CORRUPTED BY MIXED NOISE .

Image Noise noisy PSNR Kernel Denoising BiShrink K-SVD SKR L1 SKR BM3D
N denoised PSNR

Lena

mixed 1 17.98 dB (5, 5, 5, 7, 7, 7) 32.27 dB 25.30 dB 27.51 dB 31.14 dB 30.02 dB 30.65 dB
mixed 2 15,68 dB (5, 5, 5, 7, 7, 7) 29.20 dB 27.11 dB 27.58 dB 26.90 dB 28.32 dB 29.10 dB
mixed 3 26.89 dB (5, 5, 5, 7, 7, 7) 33.42 dB 33.68 dB 34.21 dB 31.97 dB 34.70 dB 34.10 dB
mixed 4 21.18 dB (5, 5, 5, 5, 5, 5) 34.48 dB 23.72 dB 29.56 dB 33.67 dB 31.96 dB 32.14 dB
mixed 5 20.35 dB (5, 5, 5, 7, 7, 7) 32.74 dB 25.99 dB 29.61 dB 31.36 dB 31.48 dB 31.77 dB

Boat

mixed 1 18.14 dB (5, 5, 5, 7, 7, 7) 30.27 dB 24.58 dB 36.92 dB 29.67 dB 28.13 dB 29.21 dB
mixed 2 15.82 dB (5, 5, 5, 7, 7, 7) 26.90 dB 25.62 dB 26.56 dB 26.18 dB 26.36 dB 27.6 dB
mixed 3 26.90 dB (5, 5, 5, 7, 7, 7) 31.56 dB 32.51 dB 33.54 dB 30.5 dB 33.42 dB 32.57 dB
mixed 4 21.20 dB (5, 5, 5, 5, 5, 5) 32.28 dB 23.55 dB 28.11 dB 31.56 dB 29.98 dB 30.5 dB
mixed 5 20.46 dB (5, 5, 5, 7, 7, 7) 30.70 dB 25.53 dB 28.20 dB 29.86 dB 29.61 dB 30.1 dB


